Modeling the Behavior of Red Blood Cells within the Caudal Vein Plexus of Zebrafish
نویسندگان
چکیده
Due to the important biological role of red blood cells (RBCs) in vertebrates, the analysis of reshaping and dynamics of RBCs motion is a critical issue in physiology and biomechanics. In this paper the behavior of RBCs within the immature capillary plexus during embryonic development of zebrafish has been analyzed. Relying on the fact that zebrafish embryos are small and optically transparent, it is possible to image the blood flow. In this way the anatomy of blood vessels is monitored along with the circulation throughout their development. Numerical simulations were performed using a specific numerical model that combines fluid flow simulation, modeling of the interaction of individual RBCs immersed in blood plasma with the surrounding fluid and modeling the deformation of individual cells. The results of numerical simulations are in accordance with the in vivo observed region of interest within the caudal vein plexus of the zebrafish embryo. Good agreement of results demonstrates the capabilities of the developed numerical model to predict and analyze the motion and deformation of RBCs in complex geometries. The proposed model (methodology) will help to elucidate different rheological and hematological related pathologies and finally to design better treatment strategies.
منابع مشابه
Yap/Taz transcriptional activity is essential for vascular regression via Ctgf expression and actin polymerization
Vascular regression is essential to remove redundant vessels during the formation of an efficient vascular network that can transport oxygen and nutrient to every corner of the body. However, no mechanism is known to explain how major blood vessels regress during development. Here we use the dorsal part of the caudal vein plexus (dCVP) in Zebrafish to investigate the mechanism of regression and...
متن کاملNuclear Receptor Subfamily 2 Group F Member 1a (nr2f1a) Is Required for Vascular Development in Zebrafish
Genetic regulators and signaling pathways are important for the formation of blood vessels. Transcription factors controlling vein identity, intersegmental vessels (ISV) growth and caudal vein plexus (CVP) formation in zebrafish are little understood as yet. Here, we show the importance of the nuclear receptor subfamily member 1A (nr2f1a) in zebrafish vascular development. Amino acid sequence a...
متن کاملFtr82 Is Critical for Vascular Patterning during Zebrafish Development
Cellular components and signaling pathways are required for the proper growth of blood vessels. Here, we report for the first time that a teleost-specific gene ftr82 (finTRIM family, member 82) plays a critical role in vasculature during zebrafish development. To date, there has been no description of tripartite motif proteins (TRIM) in vascular development, and the role of ftr82 is unknown. In...
متن کاملCdc42 mediates Bmp-induced sprouting angiogenesis through Fmnl3-driven assembly of endothelial filopodia in zebrafish.
During angiogenesis in vivo, endothelial cells (ECs) at the tips of vascular sprouts actively extend filopodia that are filled with bundles of linear actin filaments. To date, signaling pathways involved in the formation of endothelial filopodia have been studied using in-vitro-cultured ECs that behave differently from those in vivo. Herein, we have delineated a signaling pathway that governs t...
متن کاملreg6 is required for branching morphogenesis during blood vessel regeneration in zebrafish caudal fins.
Postnatal neovascularization is essential for wound healing, cancer progression, and many other physiological functions. However, its genetic mechanism is largely unknown. In this report, we study neovascularization in regenerating adult zebrafish fins using transgenic fish that express EGFP in blood vessel endothelial cells. We first describe the morphogenesis of regenerating vessels in wild-t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2016